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Learning Comprehensive Spatiotemporal
Representations for Skeleton-based Action

Recognition
Fang Ren , Chao Tang , Anyang Tong , Wenjian Wang

Abstract—Currently, Graph Convolutional Network is exten-
sively employed for skeleton-based action recognition and has
achieved appreciable performance. However, there are certain
unsolved issues with Graph Convolutional Network-based ap-
proaches. The existing methods extract the spatiotemporal fea-
tures of the skeleton sequence by stacking a series of spatiotem-
poral graph convolution modules using a single modeling method.
The network of above structures is difficult to comprehensively
characterize the spatiotemporal representations of the actions,
which is potentially discriminatory and is not conducive for
fully mining the spatiotemporal features with the coupling.
Moreover, the extraction of multi-scale spatiotemporal features
of the skeleton sequence requires heavy computing resources
and the aggregation of extracted features is insufficient. To
address the above shortcomings, we propose the Dual-path
Spatial Temporal Graph Convolutional Network (DST-GCN),
which builds a homogeneous parallel dual-channel network. This
network employs different spatiotemporal modeling methods to
extract the synergistic and complementary action features to
learn comprehensive spatiotemporal representations. Under this
framework, first, this paper proposes a Weighted Adaptive Graph
Convolutional Network (WA-GCN) which can provide weights
to joints according to their importance of action recognition to
learn the spatial topology of the human skeleton efficiently and
flexibly. Second, we design an Enhanced Multi-Scale Temporal
Convolutional Network (EMS-TCN) to ensure the extraction of
multi-scale temporal features, while strengthening the long-term
and short-term action representations of actions in the temporal
dimension, with respect to both the global and local aspects.
Finally, a Standard Euclidean Distance based Pairwise Gaussian
Loss (SED-PGL) is presented. The loss function excludes the
differences between the dimensions of sample features, and
takes into account the inter-class separation and intra-class
compactness of the samples, which helps the model to distinguish
similar actions. Experimental results on the public datasets NTU
RGB+D, NTU RGB+D 120, and Kinetics-Skeleton have achieved
the state-of-the-art performance in the industry, which also
verifies the effectiveness of the proposed method.

Index Terms—Skeleton-based action recognition, spatiotempo-
ral modeling, adaptive graph convolutional network, multi-scale
temporal feature aggregation, loss function.
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(a) sit down (b) pick up

(e) clapping (f) put palms together

(c) put on a shoe (d) wipe face

Fig. 1. Demonstration of typical skeleton-based actions. The motivations
for our proposed method are demonstrated through a specific analysis of the
characteristics of skeleton actions in the temporal and spatial dimensions.

I. INTRODUCTION

HUMAN action recognition (HAR) is an important re-
search field in computer vision and has multiple ap-

plications such as video surveillance [1], human-computer
interaction [2], and motion analysis [3]. Skeleton-based action
recognition is a significant branch in the field of HAR. Com-
pared with RGB data, skeleton data contains rich and compact
human structure information and has strong adaptability to dy-
namic environments and complex backgrounds. Therefore, it
can extract more robust action features to efficiently complete
action recognition task.

Early skeleton-based action recognition relied on manual
feature extraction. Owing to the development of deep learning,
researchers first considered using classical network models,
such as Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs), to extract the spatiotemporal
features of skeleton sequence. However, considering that the
skeleton has non-Euclidean data, classical CNN-based and
RNN-based methods cannot explore the topological infor-
mation of the human skeleton, thus making the research
unsustainable [4]. Skeleton spatiotemporal graphs have se-
mantic in temporal dimension, so certain researchers have
attempted to employ Transformer to extract the spatiotemporal
features of the skeleton sequence [5]. Furthermore, owing
to the advantages of Graph Convolutional Network (GCN)
[6] in spatial modeling, skeleton-based action recognition has
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entered a new stage [7].
The human skeleton graph has a natural topology and a

certain action of the human body constitutes a set of skeleton
spatiotemporal graphs. The GCN-based method can spatially
model the topology of skeleton and extend it to the temporal
domain, intending to extract the spatiotemporal features of
the skeleton sequence. Currently, the existing skeleton-based
action recognition methods based on GCN has the following
problems. First, the previous work [8], [9] employed a sin-
gle spatiotemporal modeling method and stacked a series of
feature extraction modules to obtain spatiotemporal features.
The spatial modeling followed by temporal modeling will nat-
urally enhance the spatial characteristics and weaken temporal
characteristics. The above spatiotemporal modeling order has
potential discrimination, which is not conducive for fully min-
ing the coupled spatiotemporal features. Further, it is difficult
to comprehensively learn the spatiotemporal representations of
the skeleton sequence. Second, for obtaining the multi-scale
spatiotemporal features, previous works [10], [11] taxed the
computing resources and ignored the aggregation of multi-
scale spatiotemporal features. Therefore, the characteristics
of skeleton-based action in both the spatial and temporal
dimensions are significant for the action recognition task.

The skeleton sequence is the trajectory of joints within
a certain period of temporal and spatial domains, and thus,
it is necessary to pay attention to the temporal and spatial
characteristics contained in it. The NTU RGB+D dataset
contains certain common actions in daily life, such as ”drink
water”, ”brush hair”, and other actions. Taking the two actions
of ”sit down” and ”pick up” as examples, the representations
in the spatial and temporal dimensions demonstrate the inter-
dependent spatiotemporal characteristics, as shown in Fig. 1(a)
and (b). We consider that the various spatiotemporal modeling
orders can fully consider the coupling of spatiotemporal fea-
tures, which affects the focus of the model on the spatial and
temporal dimensions. Take ”put on a shoe” and ”wipe face”
as examples. They are the interactions between distant joints,
but there is no physical connection between these joints in the
human skeleton, as shown in Fig. 1(c) and (d). Therefore, a
model is needed to create node connections that do not exist
in reality, so as to obtain the long-distance spatial dependence
of joints. We take ”clapping” and ”put palms together” as
examples. The action ”clapping” is a dynamic hand movement,
but ”put palms together” is a continuous static action. They
have certain similarities in the spatial dimension, though the
information in the temporal dimension is quite different, as
shown in Fig. 1(e) and (f). As we can see, some actions take
on different characteristics in different length of time segments
which can be used to effectively identify the actions.

By analyzing the action patterns, in order to solve the above
two problems, we propose a novel Dual-path Spatial Temporal
Graph Convolutional Network (DST-GCN) framework, which
contains Spatial Temporal Modeling Path (STM-Path) and
Temporal Spatial Modeling Path (TSM-Path), for learning
synergistic and complementary spatiotemporal features of the
skeleton sequence. The STM-Path consists of the Spatial Tem-
poral Convolutional Block (STCB), which employs an order of
spatial modeling followed by temporal modeling. On the con-

trary, Temporal Spatial Convolutional Block (TSCB) in TSM-
Path employs the order of temporal modeling followed by
spatial modeling. The overall framework is displayed in Fig.
2. Considering that temporal and spatial features are coupled,
DST-GCN is employed to design two spatiotemporal modeling
methods to eliminate potential discrimination, aiming to pro-
vide complementary spatiotemporal feature representations for
the same action. According to the spatial characteristics, we
propose a Weighted Adaptive Graph Convolutional Network
(WA-GCN) to learn the spatial dependence of the non-adjacent
joints at a small computational cost. Further, we obtain differ-
ent weights for joints with different partition strategies to re-
flect their contribution to action recognition. For the temporal
characteristics, we propose a Enhanced Multi-Scale Temporal
Convolutional Network (EMS-TCN). This network extracts
multi-scale temporal features and strengthens the long-term
and short-term representations of the actions in the temporal
dimension from both the global and local aspects. Besides,
to better distinguish similar actions, we design the Standard
Euclidean Distance based Pairwise Gaussian Loss (SED-PGL)
to train the proposed method for obtaining better feature space.
The contributions of our work can be summarized as follows.

• We propose DST-GCN framework which contains two
spatiotemporal modeling methods and incorporate multi
data streams and score fusion strategies for learning com-
prehensive spatiotemporal representations of the skeleton
sequence.

• We propose WA-GCN to learn the spatial dependence
of the non-adjacent joints efficiently and flexibly. WA-
GCN is a data-driven network that adaptively learns the
topology of the skeleton and the importance of node
partitioning strategies.

• We propose EMS-TCN to learn discriminative temporal
features which takes into account both the global and
local information of actions in the feature aggregation
operation.

• We design the SED-PGL to train the model. This loss
function controls the inter-class separability and intra-
class compactness, which is beneficial for distinguishing
similar actions.

The rest of the paper is organized as follows. In Section II,
we review the development of the skeleton-based action recog-
nition methods and the spatiotemporal modeling methods. The
Section III introduces the relevant background knowledge for
this paper, including GCN and multi-scale temporal features.
The Section IV introduces the methods proposed in this
paper, including DST-GCN, WA-GCN, EMS-TCN, and SED-
PGL. The Section V shows the relevant experimental results
and experimental analysis, which proves the effectiveness of
the proposed method. Finally, we summarize our work and
prospective studies in Section VI.

II. RELATED WORK

This section contains two parts. First, we will review the
development of various methods in the field of skeleton-based
action recognition. Then, we will discuss the influence of
different spatiotemporal modeling methods on the skeleton-
based action recognition methods.
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Fig. 2. The overall structure of our proposed method. We employ two data streams of skeleton sequence to train the DST-GCN and the predictions from each
path are fused by score fusion strategy to obtain the final prediction. DST-GCN contains STM-Path and TSM-Path and each path consists of M convolutional
blocks. DST-GCN are detailed in Section IV to learn comprehensive spatiotemporal representations of the skeleton sequence. WA-GCN and EMS-TCN are
detailed in Section IV for spatial modeling and temporal modeling, respectively. ⊕ denotes element wise summation.

A. Skeleton-based Action Recognition

The early task of human action recognition has been based
on RGB data [12], [13], [14], [15]. With the appearance of
Kinect camera [16] and attitude estimation algorithm [17],
skeleton-based action recognition has been studied by several
researchers. At first, the researchers have manually designed
the relevant features of the human skeleton and used machine
learning algorithms to identify the actions [18], [19], [20].
However, by employing the method based on manual design,
it is difficult to extract advanced features and cannot be
applied to large datasets, which severely limits the recognition
performance and efficiency. Owing to the interesting results of
deep learning network model on RGB data, several researchers
have also applied the classic deep learning network model,
viz., RNN and CNN, to the task of skeleton-based action
recognition.

RNNs and their variants, Long Short-Term Memory Net-
work (LSTM), have natural advantages in modeling the tem-
poral series data. For the skeleton-based action recognition,
researchers focused on the co-occurrence features of joints
to extract the spatiotemporal features [21], [22], [23]. Fur-
thermore, feature enhancement [24], [25], [26] and special
network structure [27], [28], [29], [30] have been employed
to improve the performance of the network. Unlike RNNs,
CNNs have the ability to extract the advanced features and
with efficiency in spatial modeling. Smoe researchers have
favored 2D CNN [31], [32], [33] owing to its advantages of
simple network structure and fast running speed. Furthermore,
3D CNN [34], [35] have been employed in the skeleton-
based action recognition for exploring the spatial and temporal
features in the skeleton sequence. However, RNNs and CNNs
are both insufficient for the extraction of spatial topology
information. Different from above methods based on RNN or

CNN, our proposed method based on GCN which has the
advantages in spatial modeling leading to higher recognition
performance.

Owing to the explosive development of Vision Transformer
in the field of computer vision [36], certain researchers at-
tempted using the Transformer to extract the spatiotemporal
features of skeleton sequence. The skeleton spatial temporal
graph of a skeleton sequence is a set of skeleton data on
a temporal dimension and has certain semantics. Zhang et
al. [37] have proposed Spatial-Temporal Specialized Trans-
former, who designed the Spatial Transformer Block and the
Directional Temporal Transformer Block models in spatial
and temporal dimensions to extract the spatiotemporal fea-
tures of skeleton sequence. Pang et al. [38] have proposed
the Interaction Graph Transformer, which models the human
body parts of interactions for action recognition. Transformer
has the advantages of extracting global information, and the
dynamic attention mechanism included is also conducive for
extracting discriminating features. Currently, the Transformer-
based skeleton human action recognition method is in the early
stages of development. This type of method shows tremendous
development potential. But there are still certain problems
such as large calculation amount and slow training speed.
The DTS-GCN method proposed in this paper focuses on the
spatiotemporal modeling of the skeleton sequence and obtains
an excellent recognition performance with less parameters.

GCN has a natural advantage while processing a graph
structure data like the human skeleton. Yan et al [8] have
proposed the Spatial-Temporal Graph Convolutional Network
(ST-GCN). They have first defined the skeleton spatiotemporal
graph for the skeleton-based action recognition task, and then
extracted the spatiotemporal features of the skeleton sequence
by stacking a series of spatiotemporal graph convolutional
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blocks. Finally, it has employed a SoftMax classifier for the
category prediction. Unlike the ST-GCN, where the local
spatial features of joints are extracted, Li et al [39] have
proposed the Actional-Structural Graph Convolution Network
(AS-GCN). The AS-GCN captures the specific joint depen-
dencies, through actions, and multi-neighborhood joint depen-
dencies, by extending the existing skeleton graph for structural
connections. Pre-defined topology graphs of the human skele-
ton do not reflect the invisible connections between the joints.
Therefore, the researchers attempted mining the connections
between non-adjacent joints [10] and construct an adaptive
graph structure [9], [40], besides training the network model
using multiple data streams. The above models focus on the
spatial modeling of the skeleton, though the temporal features
of the skeleton sequence are not sufficiently extracted. Multi-
scale G3D(MS-G3D) [11] and Multi-scale Spatial Temporal
Graph Convolutional Network (MST-GCN) [41] attempted
in extracting the multi-scale spatiotemporal features of the
skeleton sequence. Furthermore, Zhou et al. [42] innovatively
applied the contrastive learning to the process of network
training, which facilitates the network model to learn the
discriminative representations to distinguish similar actions.
GCN-based skeleton-based action recognition methods usually
employ a single spatiotemporal modeling approach to extract
spatiotemporal features. Different from these above GCN-
based methods [8], [9], [40], [41], the proposed DST-GCN
contains two synergistic and complementary spatiotemporal
modeling approaches. In two spatiotemporal modeling ap-
proaches, we enhance the spatial feature extraction network
and temporal feature extraction network by improving feature
aggregation operations. Furthermore, we employ the SED-
PGL as the loss function to optimize the feature space which
is beneficial to classify the similar actions.

B. Spatiotemporal Modeling

Skeleton-based action can be regarded as the spatiotemporal
interaction of joints. The temporal and spatial characteristics
that are shown are interrelated, and have a certain coupling.
Spatiotemporal modeling of the skeleton sequence is of great
significance for the skeleton-based action recognition. Cur-
rently, GCN-based methods [8], [9], [11] extract the action
features by stacking a series of spatiotemporal feature extrac-
tion network modules which have been combined in the order
of spatial modeling and temporal modeling to complete the
spatiotemporal modeling. The extraction of temporal features
in the above-mentioned spatiotemporal extraction module net-
work has been based on the extracted spatial features. Such
a single spatiotemporal modeling method is discriminatory
against the extraction of temporal features. However, the
temporal and spatial features are coupled and interdependent.
A single spatiotemporal modeling approach is not sufficient for
fully exploring the action features. Based on this research mo-
tivation, we designed two spatiotemporal modeling approaches
in proposed DST-GCN.

Considering the spatiotemporal modeling, View adaptive
neural networks [43] have been designed as a two-stream
structure (referred to as VA-fusion), using RNN stream and

CNN stream, to extract the temporal and spatial features,
respectively. Finally, they use the score fusion to predict
action categories. In order to improve the capability of extract-
ing the features from skeleton data, Symmetrical Enhanced
Fusion Network (SEFN) [44] have designed a multi-stream
framework, viz., spatial stream graph convolution product,
temporal stream graph convolution product, and temporal-
spatial fusion stream to enhance the expression ability of
skeleton-based actions. MS-G3D [11] have proposed a novel
spatial-temporal graph convolution operator G3D to obtain the
inter-temporal dependence of joints, for extracting the multi-
scale spatiotemporal features of skeleton sequence. The above
methods design the network structure from the perspective
of spatiotemporal modeling. In contrast to these methods
on spatiotemporal modeling, the DST-GCN proposed in this
paper has the following differences. (1) VA-fusion attempts to
extract spatiotemporal features using two different networks
and one spatiotemporal modeling approach. However, DST-
GCN is a method based on GCN which has two spatiotemporal
modeling approaches. Complementary spatiotemporal model-
ing approaches are beneficial for learning comprehensive spa-
tiotemporal representations. (2) SEFN adopts spatial stream,
temporal stream and fusion stream which combines temporal
and spatial features to form a three-stream network structure.
This method uses four different skeleton data streams to obtain
the spatiotemporal features of skeleton sequence but ignores
spatiotemporal correlations. Different from SEFN, DST-GCN
has designed a heterogeneous parallel dual-path framework
for the coupling of spatiotemporal characteristics. Dual-path
spatiotemporal framework can provide two cooperative and
complementary spatiotemporal feature representations for the
same action. Compared with SEFN, DST-GCN has a simpler
network model framework and better parallel training ability.
(3) MS-G3D employs high-order polynomials of joint adja-
cency matrix to aggregate the multi-scale spatial information,
so as to capture complex inter-temporal node correlation. This
method extracts features with a 3D operator which taxes a lot
of computing resources. DST-GCN adopts a dual-path parallel
network structure to broaden the width of the model and
explore the spatial and temporal characteristics of synergy
and complementarity. Owing to the residual structure and
convolution operation in the network, DST-GCN has achieved
excellent recognition performance with fewer parameters.

III. BACKGROUND

In this section, we will introduce the background theory
of the method in this paper from two aspects. First, we will
introduce GCN for spatial feature extraction in skeleton-based
action recognition methods. Then, we will introduce classical
methods for extracting temporal features in skeleton sequence.

A. GCN

GCN is a type of Graph Neural Network and is commonly
employed to process the graph-structured data, such as molec-
ular structures, social networks, and knowledge graphs. GCN
is categorized into spectral graph convolution [45] and spatial
graph convolution [46], based on the principles of constructing
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Fig. 3. The background theory of GCN for spatial feature extraction in
skeleton-based action recognition methods: (a) denotes serialized spatio-
temporal modeling, (b) denotes spatial temporal graph of a skeleton sequence,
(c) denotes spatial partitioning strategy.

graph convolution operations. Conventional CNNs have trans-
lation invariance for the convolution operations on images,
though the number of neighboring joints of each node in the
graph is not consistent. This makes it impossible to directly
perform the convolution operations on the graph structure
data. The spectral graph convolution attempts to transform
the spatial domain information of the graph into the spec-
tral domain (frequency domain), which in turn accomplishes
the convolution operation. The difference is that the spatial
domain graph convolution employs a similar operation on the
conventional convolution, thus defining the graph convolution
based on the spatial relationship of the joints. The standard
convolution operation of CNN on an image is shown as:

fout(x) =

K∑
h=1

K∑
w=1

fin(P (x, h, w)) ·W (h,w) (1)

where K×K denotes the convolution kernel size, P (x, h, w)
enumerates all neighboring pixels in a h×w region centered on
the spatial pixel point x, and W (h,w) denotes a weight vector.
Yan et al. [8] proposed ST-GCN, which innovatively applies
graph convolution to the skeleton-based action recognition. ST-
GCN performs the spatiotemporal modeling of skeleton se-
quence by sequentially stacking 10 layers of Spatial Temporal
Graph Convolution (STGC) as shown in Fig 3(a). Except for
the first layer, all network layers contain residual structures,
and the numbers in the figure indicate the number of channels
in the current network layer.

ST-GCN defines the spatiotemporal graph of the skeleton
sequence based on the natural connections of human skele-
ton joints and the connections of the same joints between
neighborhood frames, as displayed in Fig. 3(b). Particularly,
the human skeleton and action consists of N joints and T
frames, respectively. Then the undirected spatiotemporal graph
G = (V,E) is represented by a set V of joints and a set
E of edges. V = (vti|t = 1, ..., T, i = 1, ..., N), where
vti denotes the information of the i-th joint in frame t. E

consists of two subsets, ES and EF . ES = {vtivtj |(i, j) ∈ H}
denotes a natural connection of joints within the same frame,
and H denotes a natural connection pair of human joints.
EF = {vtiv(t+1)i} denotes a connection of the same joint
point between two neighborhood frames.

In addition, this work performs the partitioning for each
joint of the human skeleton. The spatial partitioning strategy is
displayed in Fig. 3(c). The green node indicates the root node,
the orange node indicates the centripetal node, and the blue
node indicates the centrifugal node. The partitioning strategy
for the neighborhood node vtj of vti can be expressed as:

lti(vtj) =

 0, ifrj = ri
1, ifrj < ri
2, ifrj > ri

(2)

where ri denotes the distance from joint vti to the center of
gravity point of the human body. Therefore, the Spatial Graph
Convolution applicable to the human skeleton information has
been defined by rewriting the sampling function P and W in
Eq. (1). The Eq. (1) is transformed into:

fout(vti) =
∑

vtj∈B(vti)

1

Zti(vtj)
fin(P (vti, vtj)) ·W (lti(vtj))

(3)
where Zti is the normalization term used to balance the
contribution of each subset. B(vti) denotes the set of 1-
neighborhood joints of vti. P (vti, vtj) denotes all neighboring
nodes vtj of vti, W denotes the weight function, and lti
denotes the subset labels that are assigned to each vti 1-
neighborhood joints vtj with a fixed subset label that pre-
scribes the order of the convolution operation. The adjacency
matrix can represent the joints connection information of the
skeleton. The above equation can be converted into Eq. (4) for
ST-GCN.

fout =

K∑
k

Wk(finAk)⊙Mk (4)

Wk is the weight matrix of fin, and Ak is the normalized
adjacency matrix of joints. Mk is the matrix of learnable
parameters used to represent the importance of each edge, and
⊙ denotes the dot product, and K = 3.

B. Multi-scale Temporal Feature

The skeleton-based action presents the multi-scale charac-
teristics in the temporal dimension, i.e., an action will present
multiple characteristics in different temporal segments and
the duration of different actions is different. The convolution
kernel 9 × 1 employed by TCN in 2s-AGCN [9] attempts to
completely characterize the action in the temporal dimension
as displayed in Fig. 4(a). However, this method does not
consider the characteristics of actions in different temporal
length segments. The MS-TCN in MS-G3D [11] employs the
convolution operation of different receptive fields to extract the
multi-scale temporal features, and the structure is displayed
in Fig. 4(b). MS-TCN has been the most commonly adopted
multi-scale temporal feature extraction network module due to
its simple structure and excellent performance. Through the
analysis of the actual action and previous research methods,
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first, we think that the action characteristics of different tempo-
ral scales can successfully describe the performance of differ-
ent length temporal segments in the action. Second, we think
that the long-distance dependence information of the action in
the temporal dimension belongs to the global characteristics,
whereas the short-distance dependence information belongs to
the local characteristics. Global features can provide complete
and continuous temporal information, whereas local features
can provide efficient and discriminating temporal information.
Therefore, it is of tremendous significance to extract the multi-
scale temporal features and strengthen them from both the
global and local aspects for skeleton-based action recognition.

IV. METHOD

In this section, we will introduce each network module
of this method in detail. First, we will introduce DST-GCN,
which is used to learn the comprehensive spatiotemporal
representations. Second, we will introduce WA-GCN for the
spatial feature extraction. Then, we will introduce EMS-TCN
for the temporal feature extraction. Finally, we will introduce
the loss function employed in the model training.

A. DST-GCN

Current GCN-based methods extract spatiotemporal features
of skeleton sequence by stacking a series of spatiotemporal
convolutional blocks of a single spatiotemporal modeling
approach, and this type of network structure neglects the
coupling of temporal and spatial features [8], [9], [11], [41].
Considering the coupling of temporal and spatial features,
and after the analysis of the action patterns and spatiotem-
poral modeling methods, we innovate the application of two
different spatiotemporal modeling approaches to obtain the
synergistic and complementary spatiotemporal features.

We propose the Dual-path Spatial Temporal Graph Con-
volutional Network (DST-GCN) framework, whose structure
is shown in Fig. 5(a). DST-GCN uses the Spatial-Temporal
Modeling Path (STM-Path) and Temporal-Spatial Modeling
Path (TSM-Path) in parallel for spatiotemporal modeling of
skeleton sequence. The input of DST-GCN is a multidi-
mensional array, and we take the Joint data stream as an

example, i.e., Input : 3 × T × N , where 3 denotes the
three dimensions of the coordinates of the joints. Here, T
denotes the duration of the action, and we uniformly expand
the action to 300 frames. N denotes the number of joints in the
human skeleton, and the value is taken differently in different
datasets. STM-Path extracts the spatiotemporal features of
skeleton sequence by stacking a series of Spatial Temporal
Convolutional Blocks (STCB). Similarly, TSM-Path extracts
spatiotemporal features by stacking a series of Temporal
Spatial Convolutional Block (TSCB). The parameter list of
convolutional block is [in channels, out channels, stride, adja-
cency matrix, residual connection] and the specific parameters
are listed in Table I. Further, the parameters of STM-Path
and TSM-Path are kept consistent. STCB and TSCB provide
two different spatiotemporal modeling approaches to learn the
diverse spatial-temporal information of the skeleton sequence
to complete the comprehensive spatial-temporal characteriza-
tion. The workflow of DST-GCN is given as follows. First, the
skeleton data are inputted into the STM-Path and the TSM-
Path pathways respectively. Taking STM-Path as an example,
one of the STCBs extracts the spatiotemporal features as:

fs
out ←WA−GCN(X) (5)

f t
out ← EMS − TCN(fs

out) (6)

fst
out = res(X)⊕ f t

out (7)

X is the output of the previous layer of the network, which
has been passed through the spatial feature extraction net-
work WA-GCN to obtain the spatial feature fs

out, which is
subsequently fed into the temporal feature extraction network
EMS-TCN to obtain f t

out. The spatiotemporal feature fst
out has

been obtained through the residual concatenation operation.
Then, after 10 layers of network to extract the features, we
have employed Global Average Pooling (GAP) to reduce the
dimensionality of the feature vectors, while retaining the key
features, and spread them to obtain the spatiotemporal feature
F st by focusing on spatial dimensional information with
dimension = 192. Finally, Fully Connect Layer (FC) has been
employed for the category prediction to obtain the prediction
Scorest. Similar operations are performed in TSM-Path. The
skeleton data are used in the TSCB of TSM-Path to extract
temporal features f t

out using EMS-TCN followed by spatial
features fs

out using WA-GCN. Subsequently, the spatiotem-
poral features F ts focusing on the information of temporal
dimension is employed to get the prediction Scorets. In the
end, we combine STM-Path and TSM-Path to form Dual-Path,
i.e., we employ a score fusion strategy on the predictions of
the two spatiotemporal modeling paths in order to obtain the
Scoredual of the dual-path spatiotemporal modeling.

Furthermore, we have employed two data streams, viz., Joint
and Bone, to train the DST-GCN to improve the robustness
and generalization of the model. Referring to the definition of
joint in Section III, given the source node vti = (xti, yti, zti)
and target node vtj = (xtj , ytj , ztj) of a skeleton for a frame t,
the bone vector has been described as bt,ij = (xtj−xti, ytj−
yti, ztj − zti), and we similarly constructed the input data
in 3 × T × N dimensions. Different categories of actions
exhibit different characteristics in the temporal and spatial
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Fig. 5. Detailed network structure of the proposed method: (a) represents the DST-GCN for learning comprehensive spatiotemporal representations of skeleton
sequence, (b) represents WA-GCN for spatial modeling, and (c) denotes EMS-TCN for temporal modeling. ⊕ denotes element wise summation. ⊗ denotes
matrix multiplication. Concat denotes concatenate by channel dimension.

dimensions, and different spatiotemporal modeling methods
focus on different action patterns with different emphases. We
use weighted score fusion to predict the final action category
to achieve the best recognition rate for the samples in the
dual-stream four-pathway framework.

Based on the analysis of skeleton action pattern, DST-
GCN is proposed to learn comprehensive representations for
skeleton-based action recognition. Two spatiotemporal model-
ing approaches, viz., STM-Path and TSM-Path, can affect the
focus of the DST-GCN on the spatial and temporal dimensions
and eliminate potential discrimination. Therefore, DST-GCN
can extract the synergistic and complementary action features
in skeleton sequence. DST-GCN employs a parallel dual-path
framework, which is simple in structure but effective and
has good parallel training capability. Two data streams has
been employed to train the DST-GCN, which increases the
robustness and recognition performance. In addition, DST-
GCN achieves sota recognition performance with low com-
plexity and is easy to reproduce and deploy. In summary,
the method proposed in this paper has good applicability in
practical applications and can also provide a new direction for
future research.

B. WA-GCN
The DST-GCN proposed in this paper contains of two spa-

tiotemporal modeling methods, viz., STM-Path and TSM-Path.
The two spatiotemporal modeling approaches are composed

of STCB and TSCB, and the specific structure is displayed
in Fig. 5(a). Obtaining the long-range spatial dependence of
joints is the key to action recognition in the spatial dimension.
However, the human skeleton belongs to the non-Euclidean
data. Therefore, increasing the sensory field in one way, when
compared with the Euclidean data, does not accurately procure
the spatial features of the joints, instead, it tends to get
redundant information and inflates the number of parameters.
We argue that the learning the adaptive graph structure of
the human skeleton can efficiently and flexibly acquire the
spatial feature information of skeleton movements, balancing
recognition performance, and consumption.

We propose the Weighted Adaptive Graph Convolutional
Network (WA-GCN) as a base module in DST-GCN, and
the structure is displayed in Fig. 5(b). WA-GCN is a data-
driven network that employs the adjacency matrix of the joints
and the weights of the partitioning strategy as part of the
network parameters, following the training of the network and
updating the parameters. The human skeleton is represented
by the adjacency matrix of joints. The adaptive graph creates
the connections between joints that are not connected in
practice, and establishes dependencies on the non-adjacent
joints. Similarly, the joints of different partitioning strategies
contribute differently to action recognition. We set the weight
parameter for learning the importance and combine it with
an adaptive adjacency matrix to increase the flexibility and
generalization ability of the model. The dimension of the input

RenFun
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TABLE I
PARAMETERS OF STM-PATH

Layer Parameter Layer Parameter
STCB1 [3,48,1,A,False] STCB7 [96,96,1,A,Ture]
STCB2 [48,48,1,A,Ture] STCB8 [96,192,2,A,Ture]
STCB3 [48,48,1,A,Ture] STCB9 [192,192,1,A,Ture]
STCB4 [48,96,2,A,Ture] STCB10 [192,192,1,A,Ture]
STCB5 [96,96,1,A,Ture] GAP Global Average Pooling
STCB6 [96,96,1,A,Ture] FC [192,Action Classes]

feature vector fs
in is Cs

in×T×N . Based on Eq. (4), the process
of extracting spatial feature fs

out by WA-GCN is shown as:

fs
out =

K∑
k=1

ωkWkf
s
in(Ak +Bk + Ck) (8)

where ω weights the node information for different partitioning
strategies and be used as part of the network parameters. Con-
volution operations on 2D images have translation invariance,
though each joint has actual semantic properties for the human
skeleton. Based on the spatial partitioning strategy in ST-
GCN [8], the joints are classified into root, centripetal, and
centrifugal nodes. Further, the nodes belonging to different
partitions have varied significance for information aggregation.
Ak is an N ×N matrix representing the physical connections
of joints in reality, where the weights are not updated. This
matrix cannot obtain the information between the non-adjacent
joints, though it is helpful to improve the stability of the initial
network training, and has certain guidance and direction for
the training of the network parameters. Bk is also an N ×N
matrix whose initial values are all zero. This matrix data has
been obtained based on the whole training samples and is the
basis for network training. It has a high flexibility for different
samples, and can theoretically obtain information between any
joints, which enhances the flexibility and generalization ability
of the model. The input feature vector fs

in has been projected
onto different subspaces using θk and ρk functions respectively
and the correlation Ck between the joints is computed to
obtain the information of the key joints in the skeleton, which
contribute to the action recognition, according to the strength
of the correlation of the joints. The weight of Ck is dependent
on the input features of the WA-GCN. The distribution of
the input features of the WA-GCNs in the STCB and the
TSCB, proposed in this paper, are not identical, which is
favorable for obtaining diverse spatial features. The input
feature vector fs

in undergoes spatial feature extraction to obtain
fs
out, which is then input to the next network module by batch

normalization and ReLU activation function, combined with
residual connection.

The proposed WA-GCN accounts for the varying impor-
tance of joints in different partitioning strategies for action
recognition, and sets a learnable weight parameter combining
with an adaptive graph. This can efficiently and flexibly learn
the spatial topology of the joints in the human skeleton, by
taking into account the model complexity and recognition
accuracy. The parameter update of the adjacency matrix Ck

depends on the features extracted from the shallow network

layer. The proposed WA-GCN under the DST-GCN framework
can acquire the spatial features more comprehensively.

C. EMS-TCN

A reasonable temporal modeling approach is beneficial for
mining the temporal features of the skeleton sequence. In the
temporal dimension, we believe that the multi-scale temporal
features are conducive for focusing on action features within
the different temporal segments. The temporal dimension is
a one-dimensional sequence form, which can be considered
as Euclidean data with translation invariance. Multi-scale
temporal features can effectively identify the differences in
the temporal dimension of actions, and thus improve the model
generalization ability. Currently available multi-scale temporal
convolution methods only capture the multiscale temporal
features. However, insufficient attention has been paid to the
aggregation of multiscale temporal features, which leads to
insufficient differentiation of actions that are similar in the
temporal dimension.

We propose the Enhanced Multi-Scale Temporal Convolu-
tional Network (EMS-TCN) as the base module in the DST-
GCN and the structure of EMS-TCN is displayed in Fig. 5(c).
To extract multi-scale temporal features of the skeleton-based
action, we employ the 3× 1 convolution kernel with different
dilation rates in order to perform feature extraction operations,
i.e., to extract multi-scale temporal features in the time di-
mension using non-symmetric dilated convolution operations.
In addition, we strengthen the temporal feature aggregation
capability in both local and global aspects. The dimension of
the input feature vector f t

in is Ct
in×T t

in×N . First, we utilize
non-symmetric dilated convolution for multi-scale temporal
feature extraction of the input features. Second, the long-range
dependence of the action in the temporal dimension can be
viewed as global information and the short-term dependence
can be viewed as local information. We aggregate the action
features within short and long time segments respectively to
obtain local and global features in the time dimension. Finally,
in order to fully characterize the temporal features of the
actions, we further aggregate the local and global temporal
features using concat operation. The Conv 1 × 1 operation
used therein not only captures the information across inter-
channel to obtain the corresponding temporal features, but also
reduces the model parameters. The input feature vector f t

in

has been subjected to the temporal feature extraction to obtain
f t
out, which is then input to the next network module by batch

normalization and ReLU activation function, and combined
with residual linkage.

Compared with the previous work on temporal features, the
EMS-GCN proposed in this paper enhances the extraction
of multi-scale temporal features from both the global and
local aspects. The long-range dependence of actions in the
temporal dimension can be regarded as global information,
whereas the short-term dependence can be regarded as local
information. EMS-GCN takes into account both the global
and local information of actions in the feature aggregation
operation, which is conducive for obtaining the discriminative
temporal features and thus distinguishing the actions that are
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similar in the temporal dimension. Based on the specific
analysis of action patterns, we obtain the relevant inductive
bias and apply it to the deep learning model. This combination
of deep learning model and inductive bias [47] is conducive
for improving the interpretability and generalization ability of
the deep learning models.

D. SED-PGL
Cross Entropy Loss (CEL) is the most common loss func-

tion for classification tasks, which can effectively train the
network parameters. For a simple binary classification task,
the formula for CEL is given as:

LCEL =
1

Ns

∑
i

− [yi · log(pi) + (1− yi) · log(1− pi)] (9)

Where yi denotes the category label of sample i, 1 for the
positive category, and 0 for the negative category. pi denotes
the probability that sample i is predicted to be in the positive
category. Under the multiclassification task, the formula for
CEL is updated as:

LCEL = − 1

Ns

∑
i

Class∑
c=1

yiclog(pic) (10)

where yic = 1 if the true category of sample i is c, and
0 otherwise. Further, pic denotes the predicted probability
that sample i belongs to category c. Class denotes the
number of categories. Based on the observation of the results
obtained from training with CEL, we have found that CEL can
effectively differentiate the samples of different classes, but
samples of the same class are more dispersed from each other,
which can easily lead to misclassification of samples of similar
action classes. We propose Standard Euclidean Distance based
Pairwise Gaussian Loss (SED-PGL) to solve the problem that
CEL only focuses on the inter-class separability and ignores
intra-class compactness. Standard Euclidean distance avoids
the variability of sample features in different dimensions,
hence SED-PGL responds to the correlation between samples
by calculating the standard Euclidean distance between the
sample features. By embedding it into the Gaussian function, it
ensures the intraclass compactness by penalizing samples that
are farther away from each other in the same class. Further,
we combine CEL and SED-PGL to ensure the inter-class
separation of samples from different categories.

The Gaussian function is one of the most common forms
of variable distribution in probability theory. We compute
the distances between samples and embed them into the
Gaussian function as a way of explicitly constructing corre-
lations between samples. However, while using the Euclidean
distance to calculate the sample distance, the problem of scale
difference in the dimension of the sample features arises.
This paper adopts the method of calculating the standard
Euclidean distance of the samples, to solve this problem,
which avoids the gradient explosion, facilitates the network
training, and improves the network performance. The formula
for calculating the standard Euclidean distance is given as:

di,j =

√√√√ D∑
n=1

(f i
n − f j

n)
2

s2n + δ
(11)

where s2n is the variance of the sample and D is the dimension
of the feature vector. δ is the smoothing factor, which can
well avoid the gradient disappearing. According to several
comparison tests, we set δ = 0.001. The samples input to
the network have been combined in pairs to compute the
standard Euclidean distance. f i and f j are the feature vectors
of the two samples in a set, viz., i ∈ {1, 3, ..., batchsize−1},
respectively. Embedding di,j into the generalized Gaussian
function formula is given as:

Gaussian(di,j) =
1

σ
√
2π

e−
(di,j−µ)2

2σ2 (12)

Eq. (12) has been simplified as Gaussian(di,j) = e−βd2
i,j by

reducing the variables in it to β. After several comparison
experiments, we set β = 0.5. The integrated probability
mapping function, i.e., the formula for the probability of a
sample predicting a category, is given as:

P (yij |dij) =
{

Gaussian(dij), yij = 1
1−Gaussian(dij), yij = 0

(13)

where yij = 1 implies that f i and f j belong to the same
category, and vice versa is 0. Based on Eq. (10) and bringing
in Eq. (13), we obtain the SED-PGL formula as:

LSED−PGL =
4

N2
s

Ns∑
i=1

Ns∑
j=i+1

− log(P (yij |dij))

=
4

N2
s

Ns∑
i=1

Ns∑
j=i+1

(βd2ij + (yij − 1) log(eβd
2
ij − 1))

(14)

According to Eq. (14), when two samples belong to the
same category and the distance between the samples is large,
LSED−PGL applies a penalty, and a larger loss value is
computed for controlling the intra-class compactness. Simi-
larly, when two samples do not belong to the same category
though the distance between the samples is small, LSED−PGL

similarly applies a penalty and a larger loss value has been
calculated for controlling the interclass separation. Thus, we
combine the cross-entropy loss function and the paired Gaus-
sian loss function based on the standard Euclidean distance as
the loss value of the whole network shown as below, and then
add a regularity term to control the importance of the two.
After many experiments, we set λ= 1.

LCSP = LCEL + λLSED−PGL (15)

The SED-PGL proposed in this paper calculates the standard
Euclidean distance between pairs of samples to reflect the
correlation between them, and controls the inter-class separa-
bility and intra-class compactness of the samples by penalizing
different class samples that are closer, and the same class
samples that are farther away. In this paper, SED-PGL and
CEL are combined to form LCSP as the loss function of the
whole network, which is not only conducive to the stability of
the pre-training of the network, but also helps to distinguish
the similarity of the action.
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V. EXPERIMENT

In this section, we first introduce three skeleton datasets:
NTU-RGB+D, NTU-RGB+D 120 and Kinetics-Skeleton. To
verify the effectiveness of the proposed method, we will
conduct the related ablation experiments on NTU-RGB+D
dataset. Besides, we will compare experiment results with
state-of-the-art methods on above three large-scale datasets to
demonstrate the excellent performance of our method.

A. Datasets

NTU RGB+D [48] contains 60 action classes performed
by 40 subjects, with a total of 56,880 video clips. In all
the 60 action classes, the first 50 action classes are single-
person actions, and the last 10 action classes are double-
person interactive actions. 3D coordinates of 25 joints have
been collected for each human body. We follow the standard
benchmarks, i.e., Cross Subject (X-Sub) and Cross View (X-
View). Particularly in X-Sub, 40,320 videos from 20 subjects
are employed for training, whereas the remaining 16,560
videos from other 20 subjects will be utilized for testing. In
X-View, all 37,920 videos from cameras 2 and 3 are employed
for training, and the remaining 18,960 videos from camera 1
are employed for testing.

NTU RGB+D 120 [49] is an expanded version of NTU
RGB+D , which contains 120 action classes performed by 106
subjects, with a total of 114,480 video clips. The difference is
that this dataset uses the benchmarks based on Cross Subjects
(X-Sub) and Cross Settings (X-Set). Particularly in X-Sub,
63,026 videos from 53 agents are employed for training,
and the remaining 50,919 videos are employed for testing.
In X-Set, there are 32 different camera setting numbers.
Further, 54,468 videos with even camera setting numbers are
employed for training, and 59,477 videos with odd camera
setting numbers will be employed for testing.

Kinetics-Skeleton [50] is a large-scale human action
dataset, which contains 300,000 video clips from 400 cat-
egories on YouTube. Yan et al. [8] have utilized the Open
Pose [51] for the first time to extract 18 joint points of the
human skeleton in the video and form a Kinetics-Skeleton
dataset. It contains about 240,000 video clips for training and
20,000 video clips for testing. Considering that this dataset
has multiple categories and is difficult to identify, we use the
accuracy of Top-1 and Top-5 as the evaluation criteria.

B. Training details

Our experiments are carried out on the PyTorch deep
learning framework with NVIDIA GeForce RTX4080 GPU.
On NTU RGB+D, NTU RGB+D 120 and Kinetics-Skeleton
datasets, batch size is set to 16. We employ Stochastic Gradient
Descent (SGD) with momentum 0.9 and weight decay 1e-4
to train our model for 80 epochs. For NTU RGB+D dataset,
the learning rate is set as 0.05 and is divided by 10 at 40-
th and 60-th epoch, separately. For NTU RGB+D 120 and
Kinetics-Skeleton datasets, the learning rate is set as 0.05 and
is divided by 10 at 50-th and 60-th epoch, separately. We

follow the data preprocessing methods1 in MS-G3D and train
the network model using the Joint stream and the Bone stream,
respectively. We adopt 2s-AGCN2 as the baseline.

C. Ablation study

We will verify the effectiveness of this method through
extensive ablation experiments on NTU RGB+D dataset, in-
cluding DST-GCN, WA-GCN, EMS-GCN, and SED-PGL.

DST-GCN: We use Joint and Bone data streams to train
DST-GCN, and obtain the recognition accuracies of different
data streams on different spatiotemporal modeling paths. On
the X-View and X-Sub benchmarks, the recognition accuracies
obtained by STM-Path, TSM-Path and Dual-Path are presented
in the form of histograms as shown in Fig. 6(a) and (b),
respectively. The recognition accuracy of the Dual-Path spa-
tiotemporal modeling approach exceeds that of both STM-Path
and TSM-Path on two different benchmarks demonstrating the
effectiveness of the Dual-Path framework in DST-GCN. Partic-
ularly, as shown in Fig. 6(a), STM-Path and TSM-Path achieve
the accuracy of 94.83% and 94.95%, respectively, when DST-
GCN has been trained on X-View Benchmark using Joint data
stream. We have performed score fusion on the predictions of
STM-Path and TSM-Path, and the model has achieved the
accuracy of 95.83%. Similarly, by employing the Bone data
stream to train DST-GCN, the Dual-Path score fusion can
effectively improve the recognition accuracy of the model.
According to Fig. 6(b), our experiments on X-Sub Benchmark
have achieved the same enhancement. Besides, we present
the confusion matrices of the DST-GCN, baseline method 2s-
AGCN [9] and the difference of these two methods in Fig. 7.
The diagonal elements of the confusion matrix represent the
accuracy of each category. Our method is generally superior to
the baseline method. Specifically, the red dashed box in Fig. 7
(c) shows the difference in recognition accuracy between the
two methods demonstrating that the the accuracy improvement
is around 4%-12% in some action categories.

To concretely demonstrate the effectiveness of DST-GCN,
we train DST-GCN on the X-View benchmark of NTU-
RGB+D dataset using Joint data stream and visualize the
recognition accuracies of STM-Path, TSM-Path, and Dual-
Path on each category, as shown in Fig. 8. The number
of correctly predicted samples in each category is divided
by the total number of samples in that category to obtain
the recognition accuracy for each category. We can see that
Dual-Path has higher recognition rates than STM-Path and
TSM-Path for most of the categories. This demonstrates that
the two spatio-temporal modeling approaches can extract
synergistic and complementary spatio-temporal features. The
action recognition rate is further improved after the score
fusion of the dual path. As we mentioned in Introduction,
”sit down” and ”pick up” have interdependent spatiotemporal
features. Dual-Path improves the recognition accuracy on
both categories which shows that skeleton actions do contain
temporal and spatial features with coupling. For ”reading”,
”writing” and ”clapping”, traditional spatiotemporal modeling

1https://github.com/kenziyuliu/ms-g3d
2https://github.com/lshiwjx/2s-AGCN
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(a) (b)

Fig. 6. Accuracy achieved by Joint data stream and Bone data stream on
different spatiotemporal modeling paths on X-View and X-Sub benchmarks.

TABLE II
ACCURACY OBTAINED BY DST-GCN ON DIFFERENT DATA STREAMS.

Methods
NTU RGB+D

X-View(%) X-Sub(%)
DST-GCN(Joint) 95.83 89.66
DST-GCN(Bone) 95.79 90.08

DST-GCN(2s) 96.53 91.06

TABLE III
DST-GCN CONTAINS DIFFERENT TEMPORAL FEATURE EXTRACTION

MODULES.

Methods
NTU RGB+D

X-View(%) X-Sub(%)
DST-GCN with TCN 95.84 90.34

DST-GCN with MS-TCN 96.26 90.84
DST-GCN with EMS-TCN 96.53 91.06

TABLE IV
ACCURACY ACHIEVED BY DIFFERENT LOSS FUNCTIONS ON NTU RGB+D

DATASET.

Loss Function
NTU RGB+D

X-View(%) X-Sub(%)
LCEL 96.36 90.72

LCSP with δ = 0.01 96.43 90.84
LCSP with δ = 0.001 96.53 91.06
LCSP with δ = 0.0001 96.19 90.54

(STM-Path) has potential discrimination. TSM-Path, by virtue
of its temporal modeling followed by spatial modeling, pays
more attention to the features of the temporal dimension,
which complements the features obtained by STM-Path. In
summary, STM-path and TSM-path are able to capture focused
feature representations of actions in spatial and temporal
dimensions, avoiding potential discrimination. Dual-Path can
further improves the recognition accuracy.

To show the feature extraction capability of the proposed
DST-GCN framework, we visualize the feature space of the
vectors F st

joint, F ts
joint, F st

bone, and F ts
bone, respectively using

the t-SNE tool, as shown in Fig. 9(a). Each dot represents a
sample, and different colors represent different categories. The
feature vectors extracted by different spatiotemporal modeling
paths under the same data stream have different spatial dis-
tributions, which essentially reflects the diversity of features
acquired by STM-path and TSM-path. The dual-stream four-
pathway framework of DST-GCN proposed in this paper
demonstrates excellent feature extraction capability, and the

spatio-temporal features extracted from different spatiotempo-
ral modeling paths are complementary, which is conducive to
learning comprehensive spatiotemporal representations.

According to previous works [9], [40], using multi data
streams to train the network can significantly improve the
generalization performance of the model. The experimental
results of using two data streams, viz., Joint and Bone, to train
the network are shown in Table II. On X-View benchmark, the
recognition accuracy of the models has reached the accuracy
of 95.83% and 95.79%. Further, the recognition accuracy of
the two streams network model has reached 96.53%, which
exceeds by 0.7% and 0.74% compared to the Joint data stream
network and Bone data stream network, respectively. Similarly,
on X-Sub Benchmark, the two-stream network model has
improved by 1.4% and 0.98% over the Joint data stream
network and the Bone data stream network, respectively, to
achieve the accuracy of 91.06%. The experimental results
show that the strategy of training the network with multiple
data streams is also effective for the proposed DST-GCN. The
combination of the two-stream strategy and the two spatiotem-
poral modeling approaches can greatly enhance the ability
of the model to extract features and learn spatiotemporal
features with comprehensiveness as a way to improve the
model generalization ability.

In addition, we also plot a scatterplot showing the relation-
ship between the different methods in terms of accuracy and
model complexity, as shown in Fig. 10. For fair comparison,
the methods we have shown are all trained using one data
stream. DST-GCN is a dual path parallel framework, which
broadens the width rather than the depth of the model and
increases the ease of model deployment. In addition, the
method based on adaptive graph structure can efficiently
acquire the spatial information of the human skeleton, and
the use of dilated convolution and convolution kernel 1 × 1
effectively reduces the number of parameters. Compared with
the baseline model [9], the proposed DST-GCN improves the
recognition accuracy while reducing the spatial complexity of
the model. Compared with other methods, our method achieves
a balance between performance and complexity.

WA-GCN: We mentioned in the WA-GCN that the topology
of the human skeleton is represented by an adjacency matrix of
size 25× 25. Ak is a predefined skeleton topology with fixed
weights and does not follow the iteration of the network to
update the parameters. The parameters of Bk are adaptively
learned from all the samples, which can create connections
between joints that do not exist in reality, and help to explore
the hidden spatial information in the human skeleton. The
values in Bk follow the iteration of the network to update.
Similarly, the parameter training of Ck relies on the sample
features extracted from the previous layer of the network,
and is sample-adaptive. Ak + Bk form the basis of the
human skeleton topology, and Ck is sample adaptive and
will dynamically adjust to different samples. In addition, the
adaptive weight ωk, as the network parameter, is conducive to
better feature aggregation. On the X-View benchmark of NTU
RGB+D dataset, taking STM-Path as an example, we visualize
the training process of the skeleton joints of ”drink water” as
the number of network layers deepens, and the experimental
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(a) (b) (c)

Fig. 7. Visualization of the confusion matrix. (a) denotes the proposed DST-GCN. (b) denotes the baseline 2s-AGCN. (c) denotes the difference of subtracting
(a) from (b). Different colors indicate the proportion of each correctly or incorrectly classified category.
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TABLE V
COMPARISONS WITH THE STATE OF-THE-ART METHODS ON THE NTU RGB+D DATASET, NTU RGB+D 120 AND KINECT-SKELETON.

Methods Source Parameters (M)
NTU RGB+D NTU RGB+D 120 Kinetics-Skeleton

X-View(%) X-Sub(%) X-Set(%) X-Sub(%) Top-1(%) Top-5(%)
ST-GCN [8] AAAI 2018 3.12 88.3 81.5 - - 30.7 52.8
2s-AGCN [9] CVPR 2019 3.47 95.1 88.5 - - 36.1 58.7
AS-GCN [39] CVPR 2019 - 94.2 86.8 - - 34.8 56.5

AGC-LSTM [24] CVPR 2019 - 95.0 89.2 - - - -
DGNN [10] CVPR 2019 13.12 96.1 89.9 - - 36.9 59.6

VA-fusion [43] TPAMI 2019 - 95.0 89.4 - - - -
MS-G3D [11] CVPR 2020 3.2 96.2 91.5 88.4 86.9 38.0 60.9

Shift-GCN [52] CVPR 2020 - 96.5 90.7 87.6 85.9 - -
NAS-GCN [53] AAAI 2020 - 95.7 89.4 - - 37.1 60.1

MS-AAGCN [40] TIP 2020 3.78 96.2 90.0 - - 37.8 61.0
Hyper-GNN [54] TIP 2021 - 95.7 89.5 - - 37.1 60.0

2s MST-GCN [41] AAAI 2021 3.0 96.4 91.1 88.3 87.0 37.8 60.3
SEFN [44] TCSVT 2021 3.5 96.4 90.7 87.8 86.2 39.3 62.1
CDGC [55] TCSVT 2022 - 96.5 90.9 87.8 86.3 - -
FGCN [56] TIP 2022 - 96.3 90.2 87.4 85.4 - -

2s Graph2Net [57] TCSVT 2022 0.9 96.0 90.1 87.6 86.0 36.4 -
4s STF-Net [58] PR 2023 6.8 96.5 91.1 88.2 86.5 36.1 58.9

SMotif-GCN [59] TPAMI 2023 - 96.1 90.5 87.7 87.1 37.8 60.6
4s-MS&TA-HGCN-FC [60] TCSVT 2023 - 96.4 90.8 88.4 87.0 38.7 62.3

EfficientGCN-B2 [61] TPAMI 2023 - 95.7 91.4 87.8 88.0 - -
EfficientGCN-B4 [61] TPAMI 2023 - 96.1 92.1 88.9 88.7 - -

LKA-GCN [62] TVCG 2023 - 96.1 90.7 87.8 86.3 37.8 60.9
DST-GCN (2s) - 2.36 96.5 91.1 88.7 87.3 38.3 60.4
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Fig. 10. Parameter vs. accuracy on NTU RGB+D X-View benchmark.
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Fig. 11. Visualization of the human skeleton at different network layers.

results are shown in Fig. 11. Each circle represents a joint, and
its size indicates its importance in the current action. For the
action ”drink water”, the joints at the shoulder, hand and near
the head are of high importance, and the spatial information
of the relevant joints helps to recognize the action.

EMS-TCN: To verify the effectiveness of the EMS-TCN
proposed in this paper, we replace this module with the
TCN module in 2s-AGCN [9] and the MS-TCN module in
MS-G3D [11], respectively, while keeping the rest of the

parameters unchanged, and then compare the model accuracy.
The experimental results are shown in Table III. DST-GCN
with the EMS-TCN module achieves an accuracy of 96.53%
on X-View Benchmark, which is 0.27% higher than the
accuracy achieved by DST-GCN with the MS-TCN module,
and 0.69% higher than the accuracy achieved by DST-GCN
with the TCN module. Similarly, on X-Sub benchmark, the
DST-GCN with the EMS-TCN module has achieved accuracy
of 91.06%, which is an improvement of 0.22% and 0.72%,
respectively. The TCN module shown in Fig. 4(a) uses only
convolution kernel 9 × 1 and therefore cannot extract multi-
scale temporal features. The MS-TCN module shown in Fig.
4(b) can extract multi-scale temporal features, but it is unable
to obtain cross-channel information, resulting in a lack of
ability to aggregate features. The EMS-TCN extracts multi-
scale temporal features and aggregates the extracted multiscale
temporal features both globally and locally according to the
inductive bias, for strengthening its long-term and short-time
action characterization in the temporal dimension, which is
conducive for mining the temporal features in the action.

SED-PGL: As shown in Eq. (15), the LCSP proposed in
this paper has two parameters, β and δ. Based on a set of
comparison experiments, we set β = 0.5. For the smoothing
factoe δ, we design a set of comparison experiments, and the
experimental results are shown in Table IV. Meanwhile, we
use LCEL alone as the loss function of DST-GCN to compare
the recognition accuracy achieved, and the experimental results
are also shown in Table IV. On the X-View benchmark of the
NTU RGB+D dataset, using LCSP with δ = 0.001 as the loss
function, the model achieved an accuracy of 96.53%, which
is 0.17% higher than when using LCEL as the loss function.
On X-Sub benchmark, using LCSP with δ = 0.001 as the
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loss function, the model achieves 91.06% accuracy, which is
0.34% higher than when LCEL is used as the loss function.
Furthermore, we observe that the model achieves the best
performance when the smoothing factor δ = 0.001 in LCSP .
Besides, we train the proposed network with LCEL alone and
visualize the four feature vectors, F st

joint, F
ts
joint, F

st
bone, and

F ts
bone as shown in Fig. 9(b). Compared with Fig. 9(a), when

using LCEL as the loss function, the distance between samples
of the same category is large, not compact enough, and the
expression of samples with similar actions is not clear enough
to differentiate. Details can be seen in the places marked by
the red round boxes.

D. Compared with the state-of-the-art

We compare the proposed DST-GCN with several recent
state-of-the-art (SOTA) methods to demonstrate the effective-
ness for skeleton-based actions recognition. For fair compari-
son, we follow the data preprocessing method [9], [11] without
any other data augmentation. The results achieved by the
proposed method on NTU RGB+D, NTU RGB+D 120 and
Kinetics-Skeleton datasets are shown in Table V.

First, we compare the results on the NTU RGB+D and NTU
RGB+D 120 datasets. For NTU RGB+D dataset, there are
some typical methods we should nocite. ST-GCN [8] is the
pioneering work which applying GCN in the skeleton-based
action recognition. Our DST-GCN surpasses ST-GCN by 8.2%
on the X-View benchmark and 9.6% on the X-Sub benchmark.
Compared to the baseline 2s-AGCN [9], we improve by
1.4% on the X-View Benchmark and 2.6% on the X-Sub
Benchmark. DST-GCN also outperforms other classic GCN-
based methods which contains single spatiotemporal modeling
approach, such as AS-GCN [39], MS-AAGCN [40] and 2s
MST-GCN [41] on both benchmarks with less parameters. VA-
fusion [43], SEFN [44], MS-G3D [11] are all designed from
the perspective of spatiotemporal modeling. Compared with
these methods, the proposed DST-GCN outperforms in terms
of model complexity and recognition accuracy, demonstrating
the effectiveness of our proposed method. It is important
to note that EfficientGCN [61] provides a family baselines.
EfficientGCN-Bx is termed with different scaling coefficient
”x”. EfficientGCN-Bx using three data streams (joint, bone and
velocity) has slightly higher recognition accuracy than DST-
GCN on X-sub benchmark. In contrast, the proposed DST-
GCN achieved the similar performance only using two data
stream (joint and bone). Multi-stream data fusion is also one
of our future research directions. Similar experimental results
appear in the NTU RGB+D 120 X-Sub benchmark. Besides,
the proposed DST-GCN also has exciting results on large-scale
NTU RGB+D 120 dateset. DST-GCN outperforms most GCN-
based methods on the X-Set benchmark and X-Sub benchmark
of NTU RGB+D 120. For example, DST-GCN outperforms the
current SOTA method, MS-G3D [11], by 0.3% and 0.4% on
X-Set Benchmark and X-Sub Benchmark, respectively.

Second, we will compare the results on Kinetics-Skeleton
dataset. This dataset is derived from real-world scenarios and
has 400 action categories, thus resulting in a low recognition
rate. The proposed DST-GCN achieves the Top-1 accuracy of

38.4% and Top-5 accuracy of 60.4%. We need to note that,
compared to DST-GCN, SEFN [44] and 4s-MS&TA-HGCN-
FC [60] exhibit better recognition performance. Specifically,
the above two methods [44], [60] both use four data streams
(joint, bone, joint-motion and bone-motion) to train the net-
work. These four skeleton data streams contain richer spa-
tiotemporal information, thus improving the recognition accu-
racy of the model. On the other hand, improving the recogni-
tion accuracy of the model in real complex environments is one
of the problems we will try to solve in the future. In summary,
all above experimental results verify the effectiveness of our
method.

VI. CONCLUSION

In this paper, first, we have proposed DST-GCN intended
for learning the comprehensive spatiotemporal representations
of skeleton-based actions, based on the analysis of action pat-
terns and feature extraction networks. DST-GCN designs two
feature extraction networks with different spatiotemporal mod-
eling orders to adapt the action patterns exhibited by skeleton-
based actions in both the temporal and spatial dimensions.
Second, under the framework of DST-GCN, we proposed WA-
GCN and EMS-TCN for the spatial and temporal feature
extraction, respectively. WA-GCN is a data-driven network
that adaptively learns the spatial topology of the human body,
establishes the dependencies between different joints, and
learns the corresponding weights for different joint partitioning
strategies. EMS-TCN focuses on multi-scale temporal features
and strengthens the long and short-time action representations
of skeleton-based actions in the temporal dimension from both
the global and local aspects. Finally, we also designed SED-
PGL to train a GCN-based model, by controlling the distance
between samples to better distinguish the similar actions. We
have proved the effectiveness of the proposed framework and
the network modules after a series of ablation experiments.
The proposed method outperforms many SOTA works on NTU
RGB+D, NTU RGB+D 120 and Kinetics-Skeleton datasets.

For future work, we will explore the following three as-
pects. First, we will focus on learning robust spatio-temporal
features with coupling in skeleton sequence by incorporating
contrastive learning and mixed model (GCN and Transformer).
Second, for the problem of lack of sufficient labeled data in
real-world scenarios, we will explore skeleton-based action
recognition under semi-supervised and unsupervised learning
frameworks. Third, we are interested to combine skeleton
data with RGB data to accomplish multimodal human action
recognition which can be a powerful solution to the problems
existing in potential practical applications [63], [64], such as
object occlusion and multi-person recognition.
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